Skip to content

MIMIC-IV 2.0 analysis using PyDTS (Meir and Gorfine, 2025)¤

The utility of PyDTS is demonstrated through an analysis of patients' length of stay (LOS) in intensive care unit (ICU) [1]. This analysis uses the publicly accessible, large-scale Medical Information Mart for Intensive Care (MIMIC-IV, version 2.0) dataset.

Meir and Gorfine (2025) [1] developed a discrete-time survival model to predict ICU LOS based on patients’ clinical characteristics at admission. The dataset comprises 25,170 ICU patients. For each patient, only the last admission is considered, and features related to prior admission history are included. The LOS is recorded in discrete units from 1 to 28 days, resulting in many patients sharing the same event time on each day.

Three competing events are considered:

  1. Discharge to home (69.0%),

  2. Transfer to another medical facility (21.4%)

  3. In-hospital death (6.1%).

Patients who left the ICU against medical advice (1.0%) are treated as right-censored, and administrative censoring is applied to those hospitalized for more than 28 days (2.5%).

The analysis includes 36 covariates per patient, comprising patient characteristics and laboratory test results at admission. Full description of the data is presented below.

The preprocessing procedure of [1,2] is implemented in pydts.example_utils.get_mimic_df().

Note that the MIMIC-IV dataset itself is not included in PyDTS; it is available at https://physionet.org/content/mimiciv/2.0/ and requires credentialed access.

Preprocessed MIMIC-IV v2.0 Dataset¤

from pydts.examples_utils.datasets import get_mimic_df
from pydts.examples_utils.mimic_consts import *

MIMIC_IV_v2_FILES_LOCATION = "/data/mimic-iv-2.0"

mimic_df, characteristics_table1, labs_table1 = get_mimic_df(MIMIC_IV_v2_FILES_LOCATION, return_table1=True)
characteristics_table1
Grouped by Discharge location
Overall Censored Died Further Treatment Home
n 25170 894 1540 5379 17357
Sex, n (%) Female 12291 (48.8) 373 (41.7) 695 (45.1) 2865 (53.3) 8358 (48.2)
Male 12879 (51.2) 521 (58.3) 845 (54.9) 2514 (46.7) 8999 (51.8)
Admission age, mean (SD) 64.1 (17.9) 58.4 (16.5) 72.7 (14.5) 73.3 (15.7) 60.8 (17.6)
Race, n (%) Asian 1035 (4.1) 27 (3.0) 76 (4.9) 165 (3.1) 767 (4.4)
Black 3543 (14.1) 154 (17.2) 197 (12.8) 741 (13.8) 2451 (14.1)
Hispanic 1326 (5.3) 53 (5.9) 53 (3.4) 180 (3.3) 1040 (6.0)
Other 1671 (6.6) 65 (7.3) 142 (9.2) 316 (5.9) 1148 (6.6)
White 17595 (69.9) 595 (66.6) 1072 (69.6) 3977 (73.9) 11951 (68.9)
Insurance, n (%) Medicaid 1423 (5.7) 86 (9.6) 66 (4.3) 222 (4.1) 1049 (6.0)
Medicare 10609 (42.1) 316 (35.3) 843 (54.7) 3253 (60.5) 6197 (35.7)
Other 13138 (52.2) 492 (55.0) 631 (41.0) 1904 (35.4) 10111 (58.3)
Marital status, n (%) Divorced 2043 (8.1) 94 (10.5) 121 (7.9) 464 (8.6) 1364 (7.9)
Married 11289 (44.9) 329 (36.8) 751 (48.8) 1853 (34.4) 8356 (48.1)
Single 8414 (33.4) 403 (45.1) 386 (25.1) 1729 (32.1) 5896 (34.0)
Widowed 3424 (13.6) 68 (7.6) 282 (18.3) 1333 (24.8) 1741 (10.0)
Direct emergency, n (%) No 22398 (89.0) 790 (88.4) 1413 (91.8) 4924 (91.5) 15271 (88.0)
Yes 2772 (11.0) 104 (11.6) 127 (8.2) 455 (8.5) 2086 (12.0)
Night admission, n (%) No 11604 (46.1) 404 (45.2) 736 (47.8) 2414 (44.9) 8050 (46.4)
Yes 13566 (53.9) 490 (54.8) 804 (52.2) 2965 (55.1) 9307 (53.6)
Previous admission this month, n (%) No 23138 (91.9) 795 (88.9) 1318 (85.6) 4821 (89.6) 16204 (93.4)
Yes 2032 (8.1) 99 (11.1) 222 (14.4) 558 (10.4) 1153 (6.6)
Admissions number, n (%) 1 15471 (61.5) 503 (56.3) 798 (51.8) 3005 (55.9) 11165 (64.3)
2 4121 (16.4) 151 (16.9) 283 (18.4) 926 (17.2) 2761 (15.9)
3+ 5578 (22.2) 240 (26.8) 459 (29.8) 1448 (26.9) 3431 (19.8)
LOS (days), mean (SD) 7.0 (6.1) 21.7 (11.6) 8.5 (6.9) 9.0 (5.8) 5.5 (4.3)
Discharge location, n (%) Censored 894 (3.6) 894 (100.0) 0 (0.0) 0 (0.0) 0 (0.0)
Died 1540 (6.1) 0 (0.0) 1540 (100.0) 0 (0.0) 0 (0.0)
Further Treatment 5379 (21.4) 0 (0.0) 0 (0.0) 5379 (100.0) 0 (0.0)
Home 17357 (69.0) 0 (0.0) 0 (0.0) 0 (0.0) 17357 (100.0)
labs_table1
Grouped by Discharge location
Overall Censored Died Further Treatment Home
n 25170 894 1540 5379 17357
Discharge location, n (%) Censored 894 (3.6) 894 (100.0) 0 (0.0) 0 (0.0) 0 (0.0)
Died 1540 (6.1) 0 (0.0) 1540 (100.0) 0 (0.0) 0 (0.0)
Further Treatment 5379 (21.4) 0 (0.0) 0 (0.0) 5379 (100.0) 0 (0.0)
Home 17357 (69.0) 0 (0.0) 0 (0.0) 0 (0.0) 17357 (100.0)
Anion gap, n (%) Abnormal 2305 (9.2) 110 (12.3) 401 (26.0) 543 (10.1) 1251 (7.2)
Normal 22865 (90.8) 784 (87.7) 1139 (74.0) 4836 (89.9) 16106 (92.8)
Bicarbonate, n (%) Abnormal 6135 (24.4) 300 (33.6) 832 (54.0) 1494 (27.8) 3509 (20.2)
Normal 19035 (75.6) 594 (66.4) 708 (46.0) 3885 (72.2) 13848 (79.8)
Calcium total, n (%) Abnormal 7326 (29.1) 365 (40.8) 756 (49.1) 1823 (33.9) 4382 (25.2)
Normal 17844 (70.9) 529 (59.2) 784 (50.9) 3556 (66.1) 12975 (74.8)
Chloride, n (%) Abnormal 4848 (19.3) 255 (28.5) 555 (36.0) 1322 (24.6) 2716 (15.6)
Normal 20322 (80.7) 639 (71.5) 985 (64.0) 4057 (75.4) 14641 (84.4)
Creatinine, n (%) Abnormal 7124 (28.3) 323 (36.1) 893 (58.0) 1945 (36.2) 3963 (22.8)
Normal 18046 (71.7) 571 (63.9) 647 (42.0) 3434 (63.8) 13394 (77.2)
Glucose, n (%) Abnormal 16426 (65.3) 635 (71.0) 1211 (78.6) 3674 (68.3) 10906 (62.8)
Normal 8744 (34.7) 259 (29.0) 329 (21.4) 1705 (31.7) 6451 (37.2)
Magnesium, n (%) Abnormal 2220 (8.8) 99 (11.1) 234 (15.2) 517 (9.6) 1370 (7.9)
Normal 22950 (91.2) 795 (88.9) 1306 (84.8) 4862 (90.4) 15987 (92.1)
Phosphate, n (%) Abnormal 6962 (27.7) 313 (35.0) 663 (43.1) 1510 (28.1) 4476 (25.8)
Normal 18208 (72.3) 581 (65.0) 877 (56.9) 3869 (71.9) 12881 (74.2)
Potassium, n (%) Abnormal 2109 (8.4) 110 (12.3) 260 (16.9) 520 (9.7) 1219 (7.0)
Normal 23061 (91.6) 784 (87.7) 1280 (83.1) 4859 (90.3) 16138 (93.0)
Sodium, n (%) Abnormal 2947 (11.7) 171 (19.1) 415 (26.9) 845 (15.7) 1516 (8.7)
Normal 22223 (88.3) 723 (80.9) 1125 (73.1) 4534 (84.3) 15841 (91.3)
Urea nitrogen, n (%) Abnormal 10032 (39.9) 413 (46.2) 1059 (68.8) 2849 (53.0) 5711 (32.9)
Normal 15138 (60.1) 481 (53.8) 481 (31.2) 2530 (47.0) 11646 (67.1)
Hematocrit, n (%) Abnormal 17319 (68.8) 691 (77.3) 1250 (81.2) 4111 (76.4) 11267 (64.9)
Normal 7851 (31.2) 203 (22.7) 290 (18.8) 1268 (23.6) 6090 (35.1)
Hemoglobin, n (%) Abnormal 18355 (72.9) 735 (82.2) 1319 (85.6) 4320 (80.3) 11981 (69.0)
Normal 6815 (27.1) 159 (17.8) 221 (14.4) 1059 (19.7) 5376 (31.0)
MCH, n (%) Abnormal 6559 (26.1) 306 (34.2) 454 (29.5) 1488 (27.7) 4311 (24.8)
Normal 18611 (73.9) 588 (65.8) 1086 (70.5) 3891 (72.3) 13046 (75.2)
MCHC, n (%) Abnormal 7762 (30.8) 313 (35.0) 634 (41.2) 2033 (37.8) 4782 (27.6)
Normal 17408 (69.2) 581 (65.0) 906 (58.8) 3346 (62.2) 12575 (72.4)
MCV, n (%) Abnormal 5106 (20.3) 243 (27.2) 418 (27.1) 1229 (22.8) 3216 (18.5)
Normal 20064 (79.7) 651 (72.8) 1122 (72.9) 4150 (77.2) 14141 (81.5)
Platelet count, n (%) Abnormal 7280 (28.9) 364 (40.7) 688 (44.7) 1618 (30.1) 4610 (26.6)
Normal 17890 (71.1) 530 (59.3) 852 (55.3) 3761 (69.9) 12747 (73.4)
RDW, n (%) Abnormal 7280 (28.9) 377 (42.2) 870 (56.5) 2016 (37.5) 4017 (23.1)
Normal 17890 (71.1) 517 (57.8) 670 (43.5) 3363 (62.5) 13340 (76.9)
Red blood cells, n (%) Abnormal 19170 (76.2) 732 (81.9) 1341 (87.1) 4478 (83.2) 12619 (72.7)
Normal 6000 (23.8) 162 (18.1) 199 (12.9) 901 (16.8) 4738 (27.3)
White blood cells, n (%) Abnormal 10013 (39.8) 466 (52.1) 1012 (65.7) 2320 (43.1) 6215 (35.8)
Normal 15157 (60.2) 428 (47.9) 528 (34.3) 3059 (56.9) 11142 (64.2)

Three estimation procedures were compared:

  1. The method of Lee et al. (2018) [3] without regularization
  2. The two-step approach of Meir and Gorfine (2025) [2] without regularization.
  3. The two-step approach of Meir and Gorfine (2025) [2] with LASSO regularization.

When applying the two-step procedure with LASSO regularization, we need to specify the hyperparameters that control the amount of regularization applied to each competing event. As demonstrated in the regularization section of this documentation, PyDTS provides functionality for tuning these hyperparameters via K-fold cross-validation. By default, the optimal values are those that maximize the out-of-sample global-AUC metric, as defined in Meir and Gorfine (2025), Appendix I. Additional tuning options are also available. Here, a grid search with 4-fold cross-validation was performed to select the optimal hyperparameters that maximize the global-AUC. The code below illustrates such tuning procedure.

import numpy as np
import warnings
warnings.filterwarnings('ignore')
from pydts.cross_validation import PenaltyGridSearchCV
import pandas as pd

step = 1
penalizers = np.arange(-12, -0.9, step=step)
n_splits = 4
seed = 1

penalty_cv_search = PenaltyGridSearchCV()
gauc_cv_results = penalty_cv_search.cross_validate(full_df=mimic_df, l1_ratio=1, penalizers=np.exp(penalizers),
                                                   n_splits=n_splits, seed=seed)
print(gauc_cv_results['Mean'].max())
print(gauc_cv_results['Mean'].idxmax())
chosen_eta = np.log(gauc_cv_results['Mean'].idxmax())
print(chosen_eta)
0.6509085412936966
(np.float64(0.006737946999085467), np.float64(0.00012340980408667956), np.float64(1.670170079024566e-05))
[ -5.  -9. -11.]

The procedure returns a pd.DataFrame with the penalizers combination as the index and the mean and standard deviation of the global-AUC across folds as the values.

gauc_cv_results
Mean SE
0.000006 0.000006 0.000006 0.649354 0.003654
0.000017 0.649362 0.003654
0.000045 0.649366 0.003650
0.000123 0.649284 0.003640
0.000335 0.649084 0.003556
... ... ... ... ...
0.367879 0.367879 0.006738 0.632751 0.001759
0.018316 0.632656 0.001746
0.049787 0.632863 0.001756
0.135335 0.633117 0.001749
0.367879 0.633375 0.001758

1728 rows × 2 columns

The chosen penalizaers \(\eta_j\), \(j=1,2,3\), are the ones that maximize the global-AUC, thus,

print(f"Maximum global-AUC (mean across folds): {gauc_cv_results['Mean'].max()}")
chosen_eta = np.log(gauc_cv_results['Mean'].idxmax())
print(f"Chosen penalizers: exp(", chosen_eta, ")")
Maximum global-AUC (mean across folds): 0.6509085412936966
Chosen penalizers: exp( [ -5.  -9. -11.] )

Additional metrics are also available - for example, the integrated AUC in each fold for each risk is included in penalty_cv_search.integrated_auc

Model Estimation¤

We now train and compare the three estimation methods, using the selected penalizers for the regularized two-step procedure:

Estimation using Lee et al. (2018)¤

from pydts.fitters import DataExpansionFitter

lee_fitter = DataExpansionFitter()
lee_fitter.fit(df=mimic_df)

Estimation using two-step without regularization¤

from pydts.fitters import TwoStagesFitter

new_fitter = TwoStagesFitter()
new_fitter.fit(df=mimic_df)

Estimation using two-step with regularization¤

reg_fitter = TwoStagesFitter()
fit_beta_kwargs = {
        'model_kwargs': { 
            1: {'penalizer': np.exp(chosen_eta[0]), 'l1_ratio': 1},
            2: {'penalizer': np.exp(chosen_eta[1]), 'l1_ratio': 1},
            3: {'penalizer': np.exp(chosen_eta[2]), 'l1_ratio': 1},            
    }
}

reg_fitter.fit(df=mimic_df, fit_beta_kwargs=fit_beta_kwargs)
from pydts.examples_utils.plots import create_mimic_analysis_results

risk1, risk2, risk3 = create_mimic_analysis_results(mimic_df, n_splits, penalizers, penalty_cv_search, 
                                                    chosen_eta, lee_fitter, new_fitter, reg_fitter)
Risk 1: 16.25 non-zero coefficients at chosen eta -5.0
Risk 2: 32.75 non-zero coefficients at chosen eta -9.0
Risk 3: 35.25 non-zero coefficients at chosen eta -11.0

No description has been provided for this image
No description has been provided for this image
risk1
Lee et al. Two-Step Two-Step & LASSO
Estimate (SE) Estimate (SE) Estimate (SE)
Admissions number 2 2 0.000 (0.024) 0.003 (0.022) -0.000 (0.000)
Admissions number 3+ 3+ -0.032 (0.023) -0.027 (0.022) -0.000 (0.000)
Anion gap Abnormal -0.137 (0.032) -0.128 (0.030) -0.000 (0.000)
Bicarbonate Abnormal -0.208 (0.021) -0.194 (0.020) -0.119 (0.019)
Calcium total Abnormal -0.291 (0.020) -0.270 (0.019) -0.190 (0.018)
Chloride Abnormal -0.148 (0.024) -0.137 (0.023) -0.071 (0.021)
Creatinine Abnormal -0.103 (0.024) -0.098 (0.023) -0.072 (0.021)
Direct emergency Yes -0.011 (0.026) -0.014 (0.024) -0.000 (0.000)
Ethnicity black Black 0.006 (0.046) 0.009 (0.042) -0.000 (0.000)
Ethnicity hispanic Hispanic 0.132 (0.053) 0.120 (0.048) 0.000 (0.000)
Ethnicity other Other -0.162 (0.051) -0.146 (0.047) -0.000 (0.000)
Ethnicity white White -0.031 (0.041) -0.026 (0.038) -0.000 (0.000)
Glucose Abnormal -0.215 (0.018) -0.192 (0.016) -0.088 (0.016)
Hematocrit Abnormal -0.042 (0.032) -0.037 (0.029) -0.042 (0.029)
Hemoglobin Abnormal -0.080 (0.033) -0.071 (0.030) -0.081 (0.030)
Insurance medicare Medicare 0.138 (0.039) 0.125 (0.036) -0.000 (0.000)
Insurance other Other 0.219 (0.036) 0.200 (0.033) 0.030 (0.016)
MCH Abnormal -0.002 (0.023) -0.002 (0.022) -0.000 (0.000)
MCHC Abnormal -0.128 (0.019) -0.116 (0.018) -0.003 (0.017)
MCV Abnormal -0.048 (0.026) -0.045 (0.024) -0.000 (0.000)
Magnesium Abnormal -0.080 (0.030) -0.074 (0.028) -0.000 (0.000)
Marital married Married 0.224 (0.032) 0.205 (0.030) 0.093 (0.016)
Marital single Single -0.087 (0.033) -0.079 (0.031) -0.000 (0.000)
Marital widowed Widowed 0.026 (0.040) 0.020 (0.037) -0.000 (0.000)
Night admission Yes 0.081 (0.017) 0.075 (0.016) 0.000 (0.000)
Phosphate Abnormal -0.052 (0.019) -0.048 (0.018) -0.000 (0.000)
Platelet count Abnormal -0.068 (0.019) -0.062 (0.018) -0.000 (0.000)
Potassium Abnormal -0.103 (0.032) -0.095 (0.030) -0.000 (0.000)
RDW Abnormal -0.327 (0.021) -0.308 (0.020) -0.271 (0.019)
Recent admission Yes -0.262 (0.035) -0.247 (0.033) -0.001 (0.027)
Red blood cells Abnormal -0.089 (0.027) -0.078 (0.024) -0.024 (0.025)
Sex Female -0.007 (0.018) -0.006 (0.016) -0.000 (0.000)
Sodium Abnormal -0.312 (0.030) -0.297 (0.029) -0.142 (0.026)
Standardized age -0.260 (0.011) -0.234 (0.010) -0.162 (0.009)
Urea nitrogen Abnormal -0.148 (0.022) -0.139 (0.020) -0.136 (0.020)
White blood cells Abnormal -0.276 (0.018) -0.252 (0.016) -0.159 (0.016)
risk2
Lee et al. Two-Step Two-Step & LASSO
Estimate (SE) Estimate (SE) Estimate (SE)
Admissions number 2 2 0.108 (0.041) 0.107 (0.040) 0.087 (0.038)
Admissions number 3+ 3+ 0.194 (0.037) 0.190 (0.036) 0.169 (0.034)
Anion gap Abnormal -0.006 (0.048) -0.006 (0.047) -0.000 (0.002)
Bicarbonate Abnormal -0.121 (0.033) -0.117 (0.032) -0.110 (0.032)
Calcium total Abnormal -0.098 (0.031) -0.094 (0.031) -0.088 (0.030)
Chloride Abnormal 0.016 (0.036) 0.015 (0.035) 0.000 (0.002)
Creatinine Abnormal -0.199 (0.036) -0.191 (0.035) -0.173 (0.035)
Direct emergency Yes -0.373 (0.052) -0.363 (0.050) -0.345 (0.050)
Ethnicity black Black 0.084 (0.090) 0.079 (0.088) 0.028 (0.086)
Ethnicity hispanic Hispanic -0.068 (0.111) -0.070 (0.108) -0.088 (0.106)
Ethnicity other Other 0.026 (0.099) 0.022 (0.097) -0.006 (0.095)
Ethnicity white White 0.144 (0.082) 0.138 (0.081) 0.094 (0.079)
Glucose Abnormal -0.138 (0.031) -0.132 (0.030) -0.126 (0.030)
Hematocrit Abnormal 0.038 (0.057) 0.039 (0.055) 0.032 (0.055)
Hemoglobin Abnormal 0.018 (0.062) 0.015 (0.060) 0.005 (0.059)
Insurance medicare Medicare 0.237 (0.075) 0.230 (0.074) 0.238 (0.073)
Insurance other Other -0.094 (0.074) -0.091 (0.072) -0.081 (0.072)
MCH Abnormal 0.042 (0.038) 0.040 (0.037) 0.019 (0.031)
MCHC Abnormal -0.010 (0.031) -0.011 (0.030) -0.000 (0.003)
MCV Abnormal -0.020 (0.041) -0.019 (0.039) -0.000 (0.003)
Magnesium Abnormal -0.039 (0.048) -0.038 (0.047) -0.025 (0.046)
Marital married Married -0.254 (0.054) -0.249 (0.053) -0.262 (0.052)
Marital single Single 0.209 (0.054) 0.200 (0.053) 0.176 (0.052)
Marital widowed Widowed 0.175 (0.058) 0.163 (0.056) 0.149 (0.056)
Night admission Yes 0.056 (0.029) 0.054 (0.028) 0.047 (0.028)
Phosphate Abnormal -0.042 (0.033) -0.040 (0.032) -0.034 (0.031)
Platelet count Abnormal -0.130 (0.032) -0.125 (0.031) -0.118 (0.031)
Potassium Abnormal 0.042 (0.048) 0.042 (0.047) 0.023 (0.047)
RDW Abnormal -0.107 (0.033) -0.104 (0.032) -0.093 (0.031)
Recent admission Yes -0.021 (0.051) -0.023 (0.049) -0.000 (0.004)
Red blood cells Abnormal 0.083 (0.052) 0.079 (0.050) 0.073 (0.050)
Sex Female 0.090 (0.031) 0.088 (0.030) 0.078 (0.030)
Sodium Abnormal -0.056 (0.042) -0.056 (0.041) -0.039 (0.038)
Standardized age 0.536 (0.021) 0.525 (0.021) 0.519 (0.021)
Urea nitrogen Abnormal 0.100 (0.035) 0.095 (0.034) 0.077 (0.034)
White blood cells Abnormal -0.107 (0.029) -0.103 (0.028) -0.099 (0.028)
risk3
Lee et al. Two-Step Two-Step & LASSO
Estimate (SE) Estimate (SE) Estimate (SE)
Admissions number 2 2 0.147 (0.074) 0.147 (0.073) 0.140 (0.074)
Admissions number 3+ 3+ 0.142 (0.069) 0.140 (0.068) 0.134 (0.068)
Anion gap Abnormal 0.582 (0.064) 0.573 (0.064) 0.571 (0.064)
Bicarbonate Abnormal 0.543 (0.056) 0.537 (0.056) 0.535 (0.056)
Calcium total Abnormal 0.204 (0.054) 0.204 (0.054) 0.203 (0.054)
Chloride Abnormal 0.147 (0.059) 0.143 (0.058) 0.142 (0.058)
Creatinine Abnormal 0.273 (0.067) 0.271 (0.067) 0.271 (0.067)
Direct emergency Yes -0.318 (0.096) -0.311 (0.095) -0.302 (0.095)
Ethnicity black Black -0.236 (0.140) -0.235 (0.139) -0.203 (0.140)
Ethnicity hispanic Hispanic -0.395 (0.183) -0.393 (0.181) -0.351 (0.181)
Ethnicity other Other 0.145 (0.147) 0.133 (0.145) 0.155 (0.146)
Ethnicity white White -0.156 (0.123) -0.157 (0.122) -0.130 (0.123)
Glucose Abnormal 0.215 (0.064) 0.212 (0.063) 0.208 (0.063)
Hematocrit Abnormal -0.198 (0.108) -0.194 (0.107) -0.165 (0.108)
Hemoglobin Abnormal 0.024 (0.122) 0.023 (0.121) 0.003 (0.121)
Insurance medicare Medicare -0.224 (0.136) -0.225 (0.135) -0.171 (0.138)
Insurance other Other -0.242 (0.133) -0.240 (0.132) -0.188 (0.135)
MCH Abnormal -0.066 (0.070) -0.066 (0.069) -0.057 (0.069)
MCHC Abnormal 0.027 (0.056) 0.029 (0.055) 0.027 (0.055)
MCV Abnormal 0.060 (0.072) 0.061 (0.071) 0.055 (0.071)
Magnesium Abnormal 0.329 (0.073) 0.324 (0.072) 0.320 (0.072)
Marital married Married 0.156 (0.102) 0.154 (0.101) 0.127 (0.061)
Marital single Single 0.026 (0.107) 0.027 (0.106) 0.000 (0.008)
Marital widowed Widowed 0.047 (0.115) 0.048 (0.114) 0.020 (0.084)
Night admission Yes -0.096 (0.053) -0.093 (0.052) -0.089 (0.052)
Phosphate Abnormal 0.178 (0.056) 0.176 (0.055) 0.174 (0.055)
Platelet count Abnormal 0.235 (0.054) 0.232 (0.054) 0.229 (0.054)
Potassium Abnormal 0.227 (0.072) 0.221 (0.071) 0.221 (0.071)
RDW Abnormal 0.492 (0.058) 0.486 (0.058) 0.483 (0.058)
Recent admission Yes 0.250 (0.083) 0.242 (0.082) 0.242 (0.082)
Red blood cells Abnormal 0.142 (0.105) 0.140 (0.104) 0.130 (0.104)
Sex Female -0.011 (0.057) -0.008 (0.057) -0.005 (0.057)
Sodium Abnormal 0.276 (0.064) 0.270 (0.063) 0.268 (0.063)
Standardized age 0.580 (0.041) 0.574 (0.040) 0.568 (0.040)
Urea nitrogen Abnormal 0.141 (0.070) 0.141 (0.070) 0.141 (0.070)
White blood cells Abnormal 0.579 (0.056) 0.571 (0.056) 0.568 (0.055)

References¤

[1] Meir, Tomer and Gorfine, Malka, "Discrete-time Competing-Risks Regression with or without Penalization", Biometrics, Volume 81, Issue 2, 2025.

[2] Meir, Tomer and Gutman, Rom and Gorfine, Malka, "PyDTS: A Python Package for Discrete-Time Survival Analysis with Competing Risks", 2022.

[3] Lee, Minjung and Feuer, Eric J. and Fine, Jason P., "On the analysis of discrete time competing risks data", Biometrics, 2018.