Estimating with DataExpansionFitter¤
Estimation¤
In the following we apply the estimation method of Lee et al. (2018). Note that the data dataframe must not contain a column named 'C'.
Model summary for event: 1
Generalized Linear Model Regression Results
==============================================================================
Dep. Variable: j_1 No. Observations: 536780
Model: GLM Df Residuals: 536745
Model Family: Binomial Df Model: 34
Link Function: Logit Scale: 1.0000
Method: IRLS Log-Likelihood: -78272.
Date: Tue, 02 Aug 2022 Deviance: 1.5654e+05
Time: 16:47:21 Pearson chi2: 5.35e+05
No. Iterations: 7 Pseudo R-squ. (CS): 0.01509
Covariance Type: nonrobust
==============================================================================
coef std err z P>|z| [0.025 0.975]
------------------------------------------------------------------------------
C(X)[1] -0.9459 0.033 -28.924 0.000 -1.010 -0.882
C(X)[2] -1.1780 0.035 -33.675 0.000 -1.247 -1.109
C(X)[3] -1.3158 0.037 -35.614 0.000 -1.388 -1.243
C(X)[4] -1.3671 0.039 -35.452 0.000 -1.443 -1.291
C(X)[5] -1.4895 0.041 -36.429 0.000 -1.570 -1.409
C(X)[6] -1.4702 0.042 -35.004 0.000 -1.553 -1.388
C(X)[7] -1.5688 0.044 -35.325 0.000 -1.656 -1.482
C(X)[8] -1.5724 0.046 -34.301 0.000 -1.662 -1.483
C(X)[9] -1.6733 0.049 -34.334 0.000 -1.769 -1.578
C(X)[10] -1.6693 0.050 -33.240 0.000 -1.768 -1.571
C(X)[11] -1.6748 0.052 -32.246 0.000 -1.777 -1.573
C(X)[12] -1.6825 0.054 -31.287 0.000 -1.788 -1.577
C(X)[13] -1.8026 0.058 -31.121 0.000 -1.916 -1.689
C(X)[14] -1.7319 0.058 -29.610 0.000 -1.847 -1.617
C(X)[15] -1.8695 0.064 -29.319 0.000 -1.994 -1.745
C(X)[16] -1.7987 0.064 -27.960 0.000 -1.925 -1.673
C(X)[17] -1.8400 0.068 -27.122 0.000 -1.973 -1.707
C(X)[18] -1.9016 0.072 -26.333 0.000 -2.043 -1.760
C(X)[19] -1.7936 0.072 -24.918 0.000 -1.935 -1.653
C(X)[20] -1.8749 0.077 -24.232 0.000 -2.027 -1.723
C(X)[21] -1.9294 0.082 -23.424 0.000 -2.091 -1.768
C(X)[22] -1.8858 0.084 -22.362 0.000 -2.051 -1.721
C(X)[23] -1.7888 0.085 -21.123 0.000 -1.955 -1.623
C(X)[24] -2.0205 0.098 -20.568 0.000 -2.213 -1.828
C(X)[25] -1.9474 0.100 -19.500 0.000 -2.143 -1.752
C(X)[26] -1.8743 0.102 -18.373 0.000 -2.074 -1.674
C(X)[27] -1.9588 0.112 -17.518 0.000 -2.178 -1.740
C(X)[28] -2.0736 0.125 -16.608 0.000 -2.318 -1.829
C(X)[29] -1.9838 0.128 -15.552 0.000 -2.234 -1.734
C(X)[30] -2.1912 0.151 -14.550 0.000 -2.486 -1.896
Z1 0.1930 0.026 7.495 0.000 0.143 0.244
Z2 -1.1306 0.026 -42.971 0.000 -1.182 -1.079
Z3 -1.1237 0.026 -42.515 0.000 -1.176 -1.072
Z4 -0.8986 0.026 -34.377 0.000 -0.950 -0.847
Z5 -0.6720 0.026 -25.869 0.000 -0.723 -0.621
==============================================================================
Model summary for event: 2
Generalized Linear Model Regression Results
==============================================================================
Dep. Variable: j_2 No. Observations: 536780
Model: GLM Df Residuals: 536745
Model Family: Binomial Df Model: 34
Link Function: Logit Scale: 1.0000
Method: IRLS Log-Likelihood: -41269.
Date: Tue, 02 Aug 2022 Deviance: 82537.
Time: 16:47:22 Pearson chi2: 5.39e+05
No. Iterations: 8 Pseudo R-squ. (CS): 0.006763
Covariance Type: nonrobust
==============================================================================
coef std err z P>|z| [0.025 0.975]
------------------------------------------------------------------------------
C(X)[1] -1.7207 0.049 -35.253 0.000 -1.816 -1.625
C(X)[2] -1.9635 0.053 -36.941 0.000 -2.068 -1.859
C(X)[3] -1.8726 0.054 -34.671 0.000 -1.978 -1.767
C(X)[4] -1.9732 0.057 -34.515 0.000 -2.085 -1.861
C(X)[5] -1.9804 0.059 -33.427 0.000 -2.096 -1.864
C(X)[6] -2.0393 0.062 -32.819 0.000 -2.161 -1.918
C(X)[7] -2.0853 0.065 -32.085 0.000 -2.213 -1.958
C(X)[8] -2.0027 0.066 -30.546 0.000 -2.131 -1.874
C(X)[9] -2.1411 0.071 -30.347 0.000 -2.279 -2.003
C(X)[10] -2.1014 0.072 -29.209 0.000 -2.242 -1.960
C(X)[11] -2.2544 0.078 -28.862 0.000 -2.408 -2.101
C(X)[12] -2.1354 0.078 -27.505 0.000 -2.288 -1.983
C(X)[13] -2.1257 0.080 -26.538 0.000 -2.283 -1.969
C(X)[14] -2.1671 0.084 -25.786 0.000 -2.332 -2.002
C(X)[15] -2.2224 0.089 -24.964 0.000 -2.397 -2.048
C(X)[16] -2.1811 0.091 -24.026 0.000 -2.359 -2.003
C(X)[17] -2.1826 0.094 -23.134 0.000 -2.368 -1.998
C(X)[18] -2.3342 0.104 -22.438 0.000 -2.538 -2.130
C(X)[19] -2.1546 0.101 -21.382 0.000 -2.352 -1.957
C(X)[20] -2.1133 0.103 -20.467 0.000 -2.316 -1.911
C(X)[21] -2.3724 0.119 -19.867 0.000 -2.606 -2.138
C(X)[22] -2.2038 0.116 -18.983 0.000 -2.431 -1.976
C(X)[23] -2.4194 0.133 -18.207 0.000 -2.680 -2.159
C(X)[24] -2.3982 0.139 -17.275 0.000 -2.670 -2.126
C(X)[25] -2.3070 0.140 -16.480 0.000 -2.581 -2.033
C(X)[26] -2.2794 0.146 -15.630 0.000 -2.565 -1.994
C(X)[27] -2.3684 0.160 -14.774 0.000 -2.683 -2.054
C(X)[28] -2.3635 0.170 -13.926 0.000 -2.696 -2.031
C(X)[29] -2.1045 0.161 -13.103 0.000 -2.419 -1.790
C(X)[30] -2.1030 0.172 -12.215 0.000 -2.440 -1.766
Z1 0.0411 0.038 1.074 0.283 -0.034 0.116
Z2 -1.1128 0.039 -28.419 0.000 -1.190 -1.036
Z3 -1.4255 0.040 -35.870 0.000 -1.503 -1.348
Z4 -1.1106 0.039 -28.398 0.000 -1.187 -1.034
Z5 -0.6620 0.039 -17.135 0.000 -0.738 -0.586
==============================================================================
Standard Errors¤
coef | std err | z | P>|z| | [0.025 | 0.975] | |
---|---|---|---|---|---|---|
Z1 | 0.0411 | 0.038 | 1.074 | 0.283 | -0.034 | 0.116 |
Z2 | -1.1128 | 0.039 | -28.419 | 0.000 | -1.190 | -1.036 |
Z3 | -1.4255 | 0.040 | -35.870 | 0.000 | -1.503 | -1.348 |
Z4 | -1.1106 | 0.039 | -28.398 | 0.000 | -1.187 | -1.034 |
Z5 | -0.6620 | 0.039 | -17.135 | 0.000 | -0.738 | -0.586 |
Prediction¤
Full prediction is given by the method predict_cumulative_incident_function()
The input is a pandas.DataFrame() containing for each observation the covariates columns which were used in the fit() method (Z1-Z5 in our example).
The following columns will be added:
- The overall survival at each time point t
- The hazard for each failure type \(j\) at each time point t
- The probability of event type \(j\) at time t
- The Cumulative Incident Function (CIF) of event type \(j\) at time t
In the following, we provide predictions for the individuals with ID values (pid) 0, 1 and 2. We transposed the output for easy view.
ID=0 | ID=1 | ID=2 | |
---|---|---|---|
Z1 | 0.548814 | 0.645894 | 0.791725 |
Z2 | 0.715189 | 0.437587 | 0.528895 |
Z3 | 0.602763 | 0.891773 | 0.568045 |
Z4 | 0.544883 | 0.963663 | 0.925597 |
Z5 | 0.423655 | 0.383442 | 0.071036 |
overall_survival_t1 | 0.942684 | 0.960628 | 0.932938 |
overall_survival_t2 | 0.899636 | 0.930545 | 0.883002 |
overall_survival_t3 | 0.861480 | 0.903726 | 0.839277 |
overall_survival_t4 | 0.827201 | 0.879254 | 0.800236 |
overall_survival_t5 | 0.797018 | 0.857533 | 0.766167 |
overall_survival_t6 | 0.768048 | 0.836364 | 0.733620 |
overall_survival_t7 | 0.742313 | 0.817381 | 0.704914 |
overall_survival_t8 | 0.716876 | 0.798470 | 0.676759 |
overall_survival_t9 | 0.694881 | 0.781915 | 0.652527 |
overall_survival_t10 | 0.673241 | 0.765482 | 0.628832 |
overall_survival_t11 | 0.653276 | 0.750077 | 0.607015 |
overall_survival_t12 | 0.633323 | 0.734605 | 0.585385 |
overall_survival_t13 | 0.615405 | 0.720649 | 0.566115 |
overall_survival_t14 | 0.597401 | 0.706425 | 0.546797 |
overall_survival_t15 | 0.581732 | 0.693972 | 0.530095 |
overall_survival_t16 | 0.565528 | 0.680961 | 0.512891 |
overall_survival_t17 | 0.550207 | 0.668566 | 0.496713 |
overall_survival_t18 | 0.536576 | 0.657400 | 0.482353 |
overall_survival_t19 | 0.521450 | 0.644937 | 0.466518 |
overall_survival_t20 | 0.507307 | 0.633237 | 0.451823 |
overall_survival_t21 | 0.495118 | 0.622977 | 0.439151 |
overall_survival_t22 | 0.482190 | 0.612062 | 0.425808 |
overall_survival_t23 | 0.469586 | 0.601189 | 0.412767 |
overall_survival_t24 | 0.459059 | 0.592128 | 0.401980 |
overall_survival_t25 | 0.447933 | 0.582483 | 0.390629 |
overall_survival_t26 | 0.436435 | 0.572414 | 0.378937 |
overall_survival_t27 | 0.426143 | 0.563323 | 0.368512 |
overall_survival_t28 | 0.416810 | 0.555060 | 0.359122 |
overall_survival_t29 | 0.406209 | 0.545669 | 0.348543 |
overall_survival_t30 | 0.397051 | 0.537568 | 0.339489 |
hazard_j1_t1 | 0.043097 | 0.031017 | 0.051717 |
hazard_j1_t10 | 0.021381 | 0.015290 | 0.025774 |
hazard_j1_t11 | 0.021267 | 0.015208 | 0.025637 |
hazard_j1_t12 | 0.021106 | 0.015092 | 0.025444 |
hazard_j1_t13 | 0.018764 | 0.013408 | 0.022632 |
hazard_j1_t14 | 0.020110 | 0.014376 | 0.024248 |
hazard_j1_t15 | 0.017570 | 0.012551 | 0.021198 |
hazard_j1_t16 | 0.018835 | 0.013460 | 0.022717 |
hazard_j1_t17 | 0.018086 | 0.012922 | 0.021818 |
hazard_j1_t18 | 0.017025 | 0.012160 | 0.020542 |
hazard_j1_t19 | 0.018930 | 0.013528 | 0.022831 |
hazard_j1_t2 | 0.034478 | 0.024750 | 0.041448 |
hazard_j1_t20 | 0.017476 | 0.012484 | 0.021085 |
hazard_j1_t21 | 0.016565 | 0.011830 | 0.019989 |
hazard_j1_t22 | 0.017291 | 0.012351 | 0.020862 |
hazard_j1_t23 | 0.019019 | 0.013592 | 0.022938 |
hazard_j1_t24 | 0.015144 | 0.010811 | 0.018280 |
hazard_j1_t25 | 0.016275 | 0.011622 | 0.019640 |
hazard_j1_t26 | 0.017487 | 0.012491 | 0.021097 |
hazard_j1_t27 | 0.016094 | 0.011491 | 0.019422 |
hazard_j1_t28 | 0.014374 | 0.010258 | 0.017352 |
hazard_j1_t29 | 0.015702 | 0.011211 | 0.018951 |
hazard_j1_t3 | 0.030175 | 0.021634 | 0.036308 |
hazard_j1_t30 | 0.012799 | 0.009130 | 0.015457 |
hazard_j1_t4 | 0.028709 | 0.020575 | 0.034555 |
hazard_j1_t5 | 0.025486 | 0.018248 | 0.030696 |
hazard_j1_t6 | 0.025969 | 0.018596 | 0.031275 |
hazard_j1_t7 | 0.023589 | 0.016880 | 0.028423 |
hazard_j1_t8 | 0.023506 | 0.016820 | 0.028323 |
hazard_j1_t9 | 0.021298 | 0.015231 | 0.025675 |
hazard_j2_t1 | 0.014218 | 0.008355 | 0.015345 |
hazard_j2_t10 | 0.009761 | 0.005725 | 0.010538 |
hazard_j2_t11 | 0.008387 | 0.004917 | 0.009056 |
hazard_j2_t12 | 0.009438 | 0.005535 | 0.010190 |
hazard_j2_t13 | 0.009528 | 0.005588 | 0.010287 |
hazard_j2_t14 | 0.009146 | 0.005363 | 0.009875 |
hazard_j2_t15 | 0.008657 | 0.005076 | 0.009348 |
hazard_j2_t16 | 0.009020 | 0.005289 | 0.009739 |
hazard_j2_t17 | 0.009006 | 0.005281 | 0.009724 |
hazard_j2_t18 | 0.007749 | 0.004542 | 0.008368 |
hazard_j2_t19 | 0.009260 | 0.005430 | 0.009998 |
hazard_j2_t2 | 0.011188 | 0.006566 | 0.012077 |
hazard_j2_t20 | 0.009647 | 0.005658 | 0.010415 |
hazard_j2_t21 | 0.007461 | 0.004372 | 0.008057 |
hazard_j2_t22 | 0.008819 | 0.005171 | 0.009522 |
hazard_j2_t23 | 0.007121 | 0.004172 | 0.007690 |
hazard_j2_t24 | 0.007273 | 0.004261 | 0.007853 |
hazard_j2_t25 | 0.007961 | 0.004666 | 0.008596 |
hazard_j2_t26 | 0.008182 | 0.004796 | 0.008835 |
hazard_j2_t27 | 0.007490 | 0.004389 | 0.008088 |
hazard_j2_t28 | 0.007527 | 0.004411 | 0.008128 |
hazard_j2_t29 | 0.009730 | 0.005707 | 0.010505 |
hazard_j2_t3 | 0.012239 | 0.007186 | 0.013211 |
hazard_j2_t30 | 0.009745 | 0.005716 | 0.010521 |
hazard_j2_t4 | 0.011081 | 0.006503 | 0.011962 |
hazard_j2_t5 | 0.011003 | 0.006457 | 0.011878 |
hazard_j2_t6 | 0.010379 | 0.006089 | 0.011205 |
hazard_j2_t7 | 0.009917 | 0.005817 | 0.010707 |
hazard_j2_t8 | 0.010762 | 0.006315 | 0.011618 |
hazard_j2_t9 | 0.009384 | 0.005504 | 0.010132 |
prob_j1_at_t1 | 0.043097 | 0.031017 | 0.051717 |
prob_j1_at_t2 | 0.032501 | 0.023776 | 0.038668 |
prob_j1_at_t3 | 0.027146 | 0.020132 | 0.032060 |
prob_j1_at_t4 | 0.024733 | 0.018594 | 0.029001 |
prob_j1_at_t5 | 0.021082 | 0.016044 | 0.024564 |
prob_j1_at_t6 | 0.020698 | 0.015947 | 0.023962 |
prob_j1_at_t7 | 0.018118 | 0.014118 | 0.020852 |
prob_j1_at_t8 | 0.017449 | 0.013749 | 0.019965 |
prob_j1_at_t9 | 0.015268 | 0.012161 | 0.017376 |
prob_j1_at_t10 | 0.014857 | 0.011956 | 0.016819 |
prob_j1_at_t11 | 0.014318 | 0.011641 | 0.016121 |
prob_j1_at_t12 | 0.013788 | 0.011321 | 0.015445 |
prob_j1_at_t13 | 0.011884 | 0.009850 | 0.013248 |
prob_j1_at_t14 | 0.012376 | 0.010360 | 0.013727 |
prob_j1_at_t15 | 0.010497 | 0.008867 | 0.011591 |
prob_j1_at_t16 | 0.010957 | 0.009341 | 0.012042 |
prob_j1_at_t17 | 0.010228 | 0.008799 | 0.011190 |
prob_j1_at_t18 | 0.009367 | 0.008130 | 0.010204 |
prob_j1_at_t19 | 0.010157 | 0.008893 | 0.011013 |
prob_j1_at_t20 | 0.009113 | 0.008051 | 0.009836 |
prob_j1_at_t21 | 0.008404 | 0.007491 | 0.009032 |
prob_j1_at_t22 | 0.008561 | 0.007694 | 0.009162 |
prob_j1_at_t23 | 0.009171 | 0.008319 | 0.009767 |
prob_j1_at_t24 | 0.007112 | 0.006499 | 0.007545 |
prob_j1_at_t25 | 0.007471 | 0.006881 | 0.007895 |
prob_j1_at_t26 | 0.007833 | 0.007276 | 0.008241 |
prob_j1_at_t27 | 0.007024 | 0.006578 | 0.007360 |
prob_j1_at_t28 | 0.006125 | 0.005779 | 0.006395 |
prob_j1_at_t29 | 0.006545 | 0.006223 | 0.006806 |
prob_j1_at_t30 | 0.005199 | 0.004982 | 0.005387 |
prob_j2_at_t1 | 0.014218 | 0.008355 | 0.015345 |
prob_j2_at_t2 | 0.010546 | 0.006308 | 0.011267 |
prob_j2_at_t3 | 0.011010 | 0.006687 | 0.011665 |
prob_j2_at_t4 | 0.009546 | 0.005877 | 0.010040 |
prob_j2_at_t5 | 0.009101 | 0.005677 | 0.009505 |
prob_j2_at_t6 | 0.008272 | 0.005222 | 0.008585 |
prob_j2_at_t7 | 0.007617 | 0.004865 | 0.007855 |
prob_j2_at_t8 | 0.007989 | 0.005162 | 0.008190 |
prob_j2_at_t9 | 0.006727 | 0.004394 | 0.006857 |
prob_j2_at_t10 | 0.006783 | 0.004477 | 0.006877 |
prob_j2_at_t11 | 0.005647 | 0.003764 | 0.005695 |
prob_j2_at_t12 | 0.006165 | 0.004152 | 0.006185 |
prob_j2_at_t13 | 0.006035 | 0.004105 | 0.006022 |
prob_j2_at_t14 | 0.005628 | 0.003865 | 0.005590 |
prob_j2_at_t15 | 0.005172 | 0.003586 | 0.005111 |
prob_j2_at_t16 | 0.005247 | 0.003670 | 0.005162 |
prob_j2_at_t17 | 0.005093 | 0.003596 | 0.004987 |
prob_j2_at_t18 | 0.004264 | 0.003036 | 0.004156 |
prob_j2_at_t19 | 0.004969 | 0.003570 | 0.004822 |
prob_j2_at_t20 | 0.005030 | 0.003649 | 0.004859 |
prob_j2_at_t21 | 0.003785 | 0.002769 | 0.003640 |
prob_j2_at_t22 | 0.004366 | 0.003221 | 0.004181 |
prob_j2_at_t23 | 0.003434 | 0.002554 | 0.003274 |
prob_j2_at_t24 | 0.003415 | 0.002562 | 0.003242 |
prob_j2_at_t25 | 0.003655 | 0.002763 | 0.003456 |
prob_j2_at_t26 | 0.003665 | 0.002794 | 0.003451 |
prob_j2_at_t27 | 0.003269 | 0.002513 | 0.003065 |
prob_j2_at_t28 | 0.003208 | 0.002485 | 0.002995 |
prob_j2_at_t29 | 0.004056 | 0.003168 | 0.003773 |
prob_j2_at_t30 | 0.003958 | 0.003119 | 0.003667 |
cif_j1_at_t1 | 0.043097 | 0.031017 | 0.051717 |
cif_j1_at_t2 | 0.075599 | 0.054792 | 0.090385 |
cif_j1_at_t3 | 0.102745 | 0.074924 | 0.122445 |
cif_j1_at_t4 | 0.127478 | 0.093518 | 0.151447 |
cif_j1_at_t5 | 0.148560 | 0.109563 | 0.176011 |
cif_j1_at_t6 | 0.169258 | 0.125510 | 0.199972 |
cif_j1_at_t7 | 0.187375 | 0.139628 | 0.220824 |
cif_j1_at_t8 | 0.204824 | 0.153376 | 0.240789 |
cif_j1_at_t9 | 0.220092 | 0.165537 | 0.258165 |
cif_j1_at_t10 | 0.234950 | 0.177493 | 0.274983 |
cif_j1_at_t11 | 0.249267 | 0.189135 | 0.291105 |
cif_j1_at_t12 | 0.263055 | 0.200455 | 0.306550 |
cif_j1_at_t13 | 0.274939 | 0.210305 | 0.319798 |
cif_j1_at_t14 | 0.287314 | 0.220665 | 0.333525 |
cif_j1_at_t15 | 0.297811 | 0.229531 | 0.345116 |
cif_j1_at_t16 | 0.308768 | 0.238872 | 0.357158 |
cif_j1_at_t17 | 0.318996 | 0.247671 | 0.368348 |
cif_j1_at_t18 | 0.328364 | 0.255801 | 0.378552 |
cif_j1_at_t19 | 0.338521 | 0.264694 | 0.389565 |
cif_j1_at_t20 | 0.347634 | 0.272745 | 0.399401 |
cif_j1_at_t21 | 0.356038 | 0.280236 | 0.408432 |
cif_j1_at_t22 | 0.364599 | 0.287931 | 0.417594 |
cif_j1_at_t23 | 0.373770 | 0.296250 | 0.427361 |
cif_j1_at_t24 | 0.380881 | 0.302749 | 0.434907 |
cif_j1_at_t25 | 0.388352 | 0.309630 | 0.442802 |
cif_j1_at_t26 | 0.396185 | 0.316906 | 0.451043 |
cif_j1_at_t27 | 0.403209 | 0.323484 | 0.458403 |
cif_j1_at_t28 | 0.409334 | 0.329263 | 0.464797 |
cif_j1_at_t29 | 0.415879 | 0.335485 | 0.471603 |
cif_j1_at_t30 | 0.421078 | 0.340468 | 0.476990 |
cif_j2_at_t1 | 0.014218 | 0.008355 | 0.015345 |
cif_j2_at_t2 | 0.024765 | 0.014663 | 0.026612 |
cif_j2_at_t3 | 0.035775 | 0.021350 | 0.038278 |
cif_j2_at_t4 | 0.045321 | 0.027227 | 0.048317 |
cif_j2_at_t5 | 0.054422 | 0.032905 | 0.057822 |
cif_j2_at_t6 | 0.062695 | 0.038126 | 0.066407 |
cif_j2_at_t7 | 0.070311 | 0.042992 | 0.074262 |
cif_j2_at_t8 | 0.078300 | 0.048154 | 0.082451 |
cif_j2_at_t9 | 0.085027 | 0.052548 | 0.089308 |
cif_j2_at_t10 | 0.091810 | 0.057025 | 0.096185 |
cif_j2_at_t11 | 0.097457 | 0.060789 | 0.101880 |
cif_j2_at_t12 | 0.103622 | 0.064940 | 0.108065 |
cif_j2_at_t13 | 0.109657 | 0.069046 | 0.114087 |
cif_j2_at_t14 | 0.115285 | 0.072911 | 0.119677 |
cif_j2_at_t15 | 0.120457 | 0.076496 | 0.124789 |
cif_j2_at_t16 | 0.125704 | 0.080167 | 0.129951 |
cif_j2_at_t17 | 0.130797 | 0.083763 | 0.134938 |
cif_j2_at_t18 | 0.135061 | 0.086799 | 0.139095 |
cif_j2_at_t19 | 0.140029 | 0.090369 | 0.143917 |
cif_j2_at_t20 | 0.145060 | 0.094018 | 0.148776 |
cif_j2_at_t21 | 0.148845 | 0.096787 | 0.152416 |
cif_j2_at_t22 | 0.153211 | 0.100008 | 0.156598 |
cif_j2_at_t23 | 0.156645 | 0.102561 | 0.159872 |
cif_j2_at_t24 | 0.160060 | 0.105123 | 0.163114 |
cif_j2_at_t25 | 0.163714 | 0.107886 | 0.166569 |
cif_j2_at_t26 | 0.167379 | 0.110680 | 0.170020 |
cif_j2_at_t27 | 0.170648 | 0.113192 | 0.173085 |
cif_j2_at_t28 | 0.173856 | 0.115677 | 0.176081 |
cif_j2_at_t29 | 0.177912 | 0.118845 | 0.179853 |
cif_j2_at_t30 | 0.181870 | 0.121964 | 0.183520 |